澳门威尼斯人赌场官网-澳门网上赌场

【科研進展】吳志澤團隊在圖結構數據驅動的人體動作識別研究方面取得新進展

發布者:科研處發布時間:2025-04-10瀏覽次數:18

人工智能與大數據學院吳志澤團隊在基于骨架數據的人體動作識別研究中取得重要進展,提出了一種結合圖卷積網絡(GCN)與自注意力機制(Self-Attention)的新方法。相關研究成果以“SelfGCN: Graph Convolution Network With Self-Attention for Skeleton-Based Action Recognition”為題,發表在國際頂級學術期刊《IEEE Transactions on Image Processing》上(DOI: 10.1109/TIP.2024.3433581)。吳志澤教授為論文第一作者,我校全職德籍教授湯衛思(Thomas Weise)為論文通訊作者,合肥大學人工智能與大數據學院為論文第一完成單位。


人體動作識別是計算機視覺領域的重要研究方向,在視頻分析、手勢識別、智能監控和人機交互等應用中具有廣泛價值。相比基于視頻或圖像的方法,骨架數據能夠通過人體關鍵關節的二維或三維坐標來表達人體結構,具有一定的環境適應性和計算效率。然而,如何充分利用骨架數據,準確建模不同關節之間的復雜時空關系,以提升識別精度,仍然是一個值得研究的挑戰。

 為此,研究團隊提出了SelfGCN模型,該方法基于圖卷積網絡構建人體骨架的拓撲結構,并引入自注意力機制,以自適應地調整關節節點的重要性權重,從而更精準地捕捉動作特征。這一研究工作為基于圖結構數據的人體動作識別提供了新的思路,有助于進一步理解和優化人體運動特征的建模方法。

(撰稿:吳彩麗,一審:陳朝明,二審:王磊,三審:王儲炎)

 


百家乐定位胆技巧| 开百家乐骗人吗| 海王星百家乐技巧| 百家乐官网赢家公式| 百家乐桌子轮盘| 晋江市| 百家乐视频二人麻将| 现金百家乐官网信誉| 总统娱乐城能赢钱吗| 百家乐挂机软件| 真人百家乐官网作| 百家乐官网软件代打| 大发888娱乐送体验金| 网上百家乐赌法| 大发百家乐官网的玩法技巧和规则 | 百家乐官网澳门有网站吗| 爱博| 百家乐| 678百家乐博彩娱乐场开户注册| 百家乐规则澳门| 互联网百家乐官网的玩法技巧和规则| 百家乐官网系统足球博彩通| 明升国际娱乐城| 娱网棋牌游戏大厅下载| 大发888游戏平台下载| 百家乐单打| 太阳城百家乐杀祖玛| 24山度数| KK百家乐官网娱乐城| 百家乐官网开和几率| 澳门百家乐官网几副牌| 赌博百家乐官网的路单| 大发888手机版亚洲城| 威尼斯人娱乐城 老品牌值得信赖| 温州百家乐官网的玩法技巧和规则| 网上百家乐官网信誉度| 浏阳市| 娱乐城开户免存送现金| 大发8880634| 顶级赌场手机版官方| 六合彩摇奖结果|